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ABSTRACT

This paper investigates magnetic fields in the solar corona. Magnetic fields undoubtedly
play a dominant role in shaping the structure and dynamics of the corona. Understanding
the magnetic fields is paramount in our quest to answer unanswered questions regard-
ing the corona such as coronal heating. Unfortunately we are plagued with difficulties
when observing the magnetic field on the corona. Only at the photospheric height can
we easily observe magnetic fields made possible by the Zeeman effect, thus coronal mag-
netic fields must be extrapolated from the photosphere. Several different methods for this
are explored, with a focus on the Green’s function method. A numerical extrapolation
of coronal magnetic fields is performed using the Green’s function method. The magne-
tohydrodynamic equations are derived and their importance in solar and space plasma
physics is discussed.
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INTRODUCTION

The sun is our parent star, a giant sphere of bright burning plasma (an ionised gas con-
sidered the fourth state of matter). It is the source of most life and energy on Earth. As
such it is no wonder that humans had once assigned mythological attributes to it. Some
cultures even saw the sun as a deity, such as the ancient Egyptians who worshipped it
as Ra and the Greeks who worshipped it as Helios (incidentally the etymological root
of helium). As time passed, rigorous observations and the scientific method led to a re-
fined comprehension of the sun. Copernicus correctly deducted that the sun is the centre
of our solar system. Galileo’s observations of sunspots led him to reason that the sun
was a rotating sphere. A full understanding of the sun (i.e. the underlying processes that
shape the structure and dynamics) has yet to be achieved even after many centuries of
study. Humanity’s ascent into space has allowed for improved observation of the sun
with spacecrafts such as the Solar Dynamics Observatory (SDO), Solar Terrestrial Re-
lations Observatory (STEREO) and Solar and Heliospheric Observatory (SOHO). These
carry instruments which can collect data from beyond our visible spectrum; for example
the Atmospheric Imaging Assembly (AIA) aboard the SDO and X-ray Telescope (XRT)
aboard the Hinode photograph the sun in the Extreme Ultra Violet (EUV) and X-ray
ranges respectively. Much of the electromagnetic radiation emitted by solar phenomena
under study is in the invisible spectrum, thus these instruments provide us with clear de-
tails of interesting solar activity such as flares and coronal loops which would be difficult
(but not impossible) to observe from Earth.

The sun consists of several distinct regions at different radii - the core, radiative zone,
convective zone, photosphere, chromosphere, transition region and corona (the latter
three are sometimes considered collectively as the solar atmosphere). The core is the
hottest, densest part of the sun, with a temperature of around 15 x 10°K. Nuclear fusion
occurs in the core producing helium from hydrogen mostly via the proton-proton chain
reaction. The radiative and convective zones are responsible for the transport of energy
generated from the nuclear core to the surface of the sun. Although both regions transport
thermal energy, they do so using different processes which is reflected in their names.

The radiative zone extends from the core up to around 0.7 solar radii. In this region,
thermal radiation transfers energy outwards from the core. Photons are emitted from
hydrogen and helium ions and reabsorbed by other ions thus transferring energy. The
convective zone lies above the radiative zone and extends to the solar surface. Similar to



INTRODUCTION

the effect a heater has on air in a room, pockets of plasma are heated by the radiative zone
below, lowering the density and causing them rise towards the surface. As they do so, heat
is lost to the cooler plasma surrounding it. This increases the density of the plasma pocket
and leads to it sinking back down towards the top of the radiative zone where it heats up
again and continues the cycle of convection.

The photosphere is the visible surface of the sun. H™ ions are the primary reason the
sun is opaque below photospheric height as they absorb photons easily. The density of H™
ions is much smaller here which reduces the opacity, allowing photons to pass through.

The solar corona is the inconspicuous outermost region of the solar atmosphere. It’s
density is 107!2 times the density of the photosphere and as a result it is significantly
dimmer than the rest of the sun. Due to this, the corona cannot be observed from earth
without use of a coronagraph or the occurrence of a total solar eclipse.

The corona is extremely hot with a temperature
of over 10°K. In contrast, the photosphere is only
around 5800K, much cooler than the corona. This
temperature difference seems puzzling as the en-
ergy heating the corona cannot be delivered from
below it by traditional thermal means. This would
violate the second law of thermodynamics since the
solar surface is cooler than the corona. How the
corona is so much hotter than the solar surface is

still one of the major unanswered questions con-
cerning the corona. Due to the extreme tempera-
tures, metals can become highly ionised. This led to
. S . Figure 1: Solar corona made visible
the inaccurate attribution of a coronal spectral line i o
o . . during a total eclipse in 1999.
at 5303A to an hypothetical undiscovered element
called coronium as spectral lines at this wavelength
did not correspond to any known element and had never been seen in laboratory condi-
tions on Earth!l. The actual source of this spectral line is Fe XIV (an iron ion).

Above the photosphere, a range of phenomena have been observed in “active regions’,
such as sunspots, coronal loops, solar flares and coronal mass ejections, all of which are
linked to magnetic activity in the sun. The quantity and frequency of these phenomena
rise and fall periodically within what is known as a solar cycle (averaging 11 years per
cycle). Sunspots, an iconic feature of the sun, are dark spots which appear on the photo-

sphere and are a consequence of the differential rotation experienced by the sun. Since the
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sun is plasma, the angular speed is not fixed like a solid. As a result we see a full rotation
of the photosphere rotates every 25 whilst a full rotation at a latitude of 45° needs 27.8
days?l. Due to this differential rotation, magnetic field lines in the convective zone may
become twisted and limit thermal convection to the photosphere at these points, mani-
festing as sunspots. As convection is limited at the sunspots, their temperature is lower
than the neighbouring areas on the photosphere. Since the sun approximates a blackbody,
its radiant emittance is proportional to the fourth power of temperature as given by the
Stefan-Boltzmann Law: j* = ¢ T*. Thus it is clear to see why sunspots appear darker than
their surroundings (simply due to lower temperature). Sunspots usually come in pairs
with opposite magnetic polarities. It has been shown that the active regions of the sun
account for as much as 82.4% of the total required energy for coronal heating3, thus we
should study active regions in order to gain an understanding of the solar corona.

1.1 UNSOLVED PROBLEMS OF THE SOLAR CORONA

The most prominent problem regarding the corona is coronal heating. There are two
main models that have been proposed to explain this phenomena - wave heating (DC)
and current heating (AC). In the wave heating model, it is proposed that the solar inte-
rior produces various waves such as acoustic, gravitational and magnetohydrodynamic
waves which dissipate in the corona releasing their energy 4. However it has been shown
that most waves do not reach the solar atmosphere, being reflected or damped due to
shock formation. Alfvén waves are transverse in nature thus do not experience shock and
damping, making them the most viable explanation for wave heating[5l. Alfvén waves are
essentially oscillating ions within a plasma which do so due a restoring force given by

(BY)B 6] Alfvén waves are produced by the magnetic fields
Ho

the magnetic tension force
of the sun and the motion of plasma within it — since plasma is a conducting fluid, any
movement (which could be due to rotation of the sun) gives the plasma an electromotive
force which in turn produce waves.[7l. The fact that Alfvén waves do not dissipate before
reaching the corona is also its downfall in explaining coronal heating, since they do not
dissipate (and release energy) easily in the corona either.

The most popular hypothesis based on current heating relies on magnetic reconnection
and nanoflares. Flares can be loosely defined as an observed brightening across any wave-
length, with a lifespan in the order several minutes. Nanoflares are similar phenomena
but happen must faster, with more than several thousand observed per second[®]. The ac-

tive regions (typically regions above sunspots!'!) exhibit constantly shifting footpoints of
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Figure 2: Left: HMI magnetogram (from 2nd of January 2014) showing line of sight value of nor-
mal magnetic field. Higher white value of pixel indicates higher magnitude of positive
flux, and vice versa for black.

Right: Atmospheric Imaging Assembly image in the EUV wavelength range. Image
shown was taken in the 171 Awavelength. Coronal structures such as loops clearly visi-
ble.

the magnetic fields which occur due to convective motion below the photosphere!4!. This
causes field lines to intertwine and knot together forming areas with high current known
as current sheets or tangential discontinuities!l. The tangential discontinuities build up
and eventually dissipate and release energy as nanoflares via magnetic reconnection. This
is where opposing magnetic field lines split and reconnect, releasing kinetic energy while
doing so. This process however has been shown to be naturally too slow to cause flares,
thus an "anomalous resistivity" is usually inserted to match observations. "]

The solar corona is also subject to various observational problems. Unfortunately we
can only reliably observe magnetic fields at photospheric height. Additionally many mag-
netograms only provide line-of-sight (longitudinal) values for magnetic field, B;. Vector
magnetograms provide values of transverse field components, however there exists a 180°
ambiguity in their direction.

EUV images such as the one shown in 2 visibly show us solar activity in the corona
such as flares and coronal loops but give us no information about the properties of the
magnetic fields in this domain. The influence of magnetic fields on the corona cannot
be understated, consequently we see that this imperfect information is a great hindrance
to understanding the corona. Since direct observation of the coronal magnetic fields with
magnetograms is not possible, we must numerically extrapolate them from data provided
with photospheric height magnetograms. This is discussed in detail in chapter 3.
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THEORY OF CORONAL PLASMA PHYSICS

Let us construct a framework for mathematical descriptions of coronal plasma.

2.1 ELECTROMAGNETISM

Consider Maxwell’s equations which provide a foundation for describing electromag-

netism.

g P
VE—eO (1)
V-B=0 (2)

0B
VxE——E— (3)

1 . JoE

%VXB—]—FGQE (4)

where E is the electric field, B is the magnetic field, p, is the charge density and j
is the current density. Equation (4) can be simplified as we are within the context of
non-relativistic plasma (the corona is plasma and v < c). Let us show that in the non-
relativistic frame, the displacement current term, €y9E/ot can be neglected as it is much
less than 1/, V x B.

Set L (where L = Ax, Ay, Az)as the typical length scale of plasma inhomogeneity, so that
any displacement of L will change the magnetic field by B ~ AB. Set T as the typical time
scale such that: 9/3+ = 1/T to estimate typical plasma speed, V. Thus we can approximate
orders of magnitude for each variable in (4):

Ry SR S or \V4

QU
=
>
=
h
2
SRS
Q
=] =

VaL/T

Now we make use of Ohm’s Law to examine the current density term. For a moving
plasma, Ohm’s Law is given by:

j=0c(E+vxB) ()
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where ¢ is conductivity. This is simply Ohm’s Law for an immobile conductor, j = ¢E,
with the addition of a Lorentz force term, F = q (E+ v x B) due to magnetic influences.
In fully ionized plasmas, conductivity is given by:

2

-1
1ee 162 neet
g = =
Veltle e 47(6%7119'5](1'5 TL5

= (2x1073)T!*

We can see a proportional relationship exists between conductivity and temperature,
namely ¢ « T'5. Due to this relationship and the extremely high temperature of plas-
mas, it is clear that their conductivity is also extremely high, essentially allowing them to
be treated as superconductors. Since conductivity can be defined as ¢ = !/r4, and super-
conductors have no resistance, as R — 0, ¢ — oo. Although conductivity does not have
a finite limit, current density j must remain finite (infinite current density would require
infinite charge or area). Looking back at equation 5 with this in mind, it is clear to see that
(E+ v x B) — 0 to keep j finite. We can equivalently say that E = —v x B, so E ~ VB.

These order of magnitudes can used to estimate the ratio of the displacement current
term, €99E/at and 1/uy(V x B):

. JE _ eFE (VxB) B
Oat - T Ho - L]/t()
. €0E L‘uo
tio = — . 22
ratio T B
= eopo V>

~\C
Since we are in the non-relativistic frame, the ratio
(V/e)? <1

i.e -
€0§

— <1
%(VXB)

This shows that the displacement current is many orders of magnitude smaller allowing
us to neglect it and rewrite equation (4) simply as:

j::OVxB (6)
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We can also use Ohm’s Law to rewrite equation (3) in terms of only magnetic fields.
Rearranging Ohm’s Law in equation (5) to make E the focus gives us:
E—) _(vxB)
o

This can then be inserted into equation (3):

B .
—%t:Vx |:(]7—(VXB):|

Equation (6) gives us the current density j of a plasma which we can also substitute in,
thus the equation becomes:

JB V x B

=V x (vxB) — (1oo) "'V x (V x B)

(7)

Notice that we have a V x (V x B) term in our equation expressing the curl of the curl
of the magnetic field. This is equivalent to the following vector identity

Vx(VxA)=V(V-A)-V3A 8)

Equation 2 is a constraint stating V - B = 0. This allows us to simplify V x (V x B) to
V2B.

We can prove this vector identity using the Levi-Civita symbol (and kronecker delta
function). The Levi-Civita symbol is denoted by the letter € and is written with indices
A la Einstein notation. It essentially represents a sign which is based on the permutation
of the indices. When any of the indices are equal, the Levi-Civita symbol is zero for exam-
ple €121 = 0, in three dimensions, the Levi-Civita is given by €;j where even permutations
of the indices yield +1 and odd permutations yield -1:

0 ifi=jori=korj=k,
&ijk =y +1 if (i,7,k) = (1,2,3) or (2,3,1) or (3,1,2),
-1 if (7,j,k) = (3,2,1) or (2,1,3) or (1,3,2),

Thus the cross product of two vectors u and v can be expressed using the Levi-Civita
symbol

[u x v]; = €;jpujvg

SO
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FORI=1
[uxv]y = e€123U203 + €132U30; + terms that cancel to zero due to repeated index
= UQU3 — U3V2
FOR I = 2
[u X V]Z = €313U103 + €331u3v1 + 0
= —U103+ U30q
FORI =23
[uxv]s = e31pu102 + €321U201 + 0

= U102 — U201

Thus the resultant vector is:

UpU3 — U3T2
[uxv] = | us0; — uq0s 9)

U102 — U2V
Now let us express the cross product of a cross product u x (v x w)

[ux(vxw)]i = eijkuj(vxw)k
= €ijkUj€kImVIWm

= €jjk€xImUjV1Wm (10)

Here we have two Levi-Civita symbols, the product of which can be written in terms of
the Kronecker delta as follows:

€ijk€kim = 6i10jm — OimIji

The Kronecker delta, is similar to the Levi-Civita symbol in that it’s value depends on its
indices. When the indices are equal, the Kronecker delta is unity and when they differ,
the Kronecker delta is zero i.e.

1 ifi=]

0 ifi #j,
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Thus equation (10) can be written as:

[ux (vxw)]i = ujo;wu(6i6jm — 6imdj1)
= (Siléjmujvlwm — (5im5jlujvlwm
= 5ilvl(§jmujwm) — (5imwm((5]-1ujvl) (11)

Recall that the Kronecker delta function is only equal to one when the indices are
repeated, and zero for all else, therefore

[u X (V X W)]l = (5iivi(5mmumwm) — 511w1((5]]u]v])

= 0(Umwm) — w;i(u;v;)
ux (vxw)=v(u-w)—w(u-v) (12)

Substituting in the del operator V and magnetic field B we find

Vx(VxB) = V(V-B)—B(V-V)
= V(V-B)-V’B

which proves the vector identify in (8), hence (7) can indeed be reduced to

oB

FTi V x (v x B) + (1) "'V?B (13)

2.2 FLUID MOTION

Since the solar corona is composed of plasma, we should include the motion of plasma
in our framework. Plasma motion can be approached in a micro (kinetic) or macroscopic
(fluid) manner. In the microscopic approach, each particle is considered individually. The
equation of motion for a charged particle can be obtained by combining Newton’s Second
Law, F = ma = m%, with Lorentz Law, F = q(E + v x B):

XZ%(E‘FVXB) (14)

This equation of motion and Maxwell’s equations are solved for each charged particle in
the plasma, usually on a scale of 10® particles. This is known as the particle-in-cell (PIC)
method.

The macroscopic approach is generally more useful. In this case we treat the plasma as
a collective fluid rather than looking at each particle within it, as fluid motion is macro-
scopic. An important property of fluids is continuity which means that when we refer to
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a small element of fluid, it is still large compared to the microscopic scale. Thus we can
label a fluid "particle” as an infinitesimally small volume element of the fluid which itself

T

contains many particles.

dx dy

Figure 3: Volume element, dV, fixed in space with sides of length dx, dy, dz. A surface element with
area ds with a normal unit vector, 7 is also shown. The surface element vector (ds - 71)is
denoted as dS

Figure 3 shows the volume element dV of a fluid. We will assume there are no sinks or
sources in the volume element that will have an internal influence on the fluid flux. The

size of dV is fixed, so the mass of fluid inside it at any time is given by:

M = /pdV = /pdxdydx

where p is the density of dS. The unit vector 7 is set to always point out of 4V, so the
direction of dS is always from the inside to outside. We can now define the outwards fluid
flux through the element 4S as:

oV -dS

where V is the velocity vector of 4V. The total outwards flux is therefore:

fpv-ds

Due to the conservation of mass, this must be equal in magnitude (but opposite in sign)
to the inwards flux. We can define the inwards flux as

dM_ d L aﬁ
‘W—‘a/f””’— /at‘“’
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The conservation of mass can now be expressed as:

?{pV-dS—f—/?ZdV:O (15)

We can simplify this by applying Gauss’ divergence theorem in order to change the closed
surface integral into integral over the volume:

/v-(pv)dv+/?£dvzo

/ (v (pV) + g‘;) dv =0 (16)

In order for this expression to hold true for any volume regardless of shape or size, not
just our volume element, we must conclude that
0

V- (oV)+ 5 =0 (17)

Now that we have obtained a mass conservation statement, we should express the

equation of motion (conservation of momentum) for a plasma “particle’” analogous to

the one for a charged particle shown in equation (14). Let’s start with the definition of

pressure - force per unit area:
F dF

thus each area element dA with a pressure of p experiences a force of dF. Applied to our
fluid volume element dV, we can see that dF = pdS so the total force on dV is:

—]épdS:—/VpdV

where we have once again used the divergence theorem to change the surface integral

to volume integral. We can interpret this as the force per unit volume being —Vp, i.e.

% = —Vp. This can be combined with Newton’s Second Law to obtain the equation of
motion for a fluid volume element:
F=—-VpdV =ma = pdV%
dv
—Vp=p_ (18)

As we are describing fluid, a continuous medium, the acceleration term % refers to the

rate of change of velocity of a fluid element which is moving in space, rather than just the
rate of change of velocity of the fluid at a fixed point in space. Thus in order to express
this in fixed points quantities, we must recognise that the change in velocity dv (per time
interval dt) is made up of two parts:

11
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1. The change in velocity in the time interval dt at a fixed point in space given by the

position vector r.

ov
gdt

2. The difference in velocity of the fluid element at a fixed point in time of two points

given by r and r 4 dr, where dr is the distance travelled in the time interval dt.

ov ov ov
adx + @dy + gdz = (dr-V)v

so the change in velocity dv is given by:

dv = a—vdt + (dr-V)v
ot
Thus the acceleration is: p 3
v A4
E—§+(VV)V (19)

We can now substitute equation (19) into equation (18) to obtain the equation of motion
for a fluid:

1Y <?9‘t, + (v- V)v) =-Vp (20)

This equation does not take into account any external forces that act upon the fluid, thus
is an incomplete description of plasma motion. Plasma consists of charged particles and
as such, is able to carry current, thus to complete the equation of motion for plasma we
must include electromagnetic influences. Assuming the plasma has a current density of
j, we know that it will experience a Lorentz force equal to j x B. Thus our equation of
motion can be corrected by simply adding this term to the existing force term, —Vp:

p<aa‘t]+(v-V)v>:j><B—Vp (21)

Recall that equation (6) defines the current density of plasma, so we can substitute this
into equation (21) and complete our plasma motion equation:

o <?9‘t, + (v V)v) _(VxB)xB Xy]? B _ Vp (22)

2.3 MAGNETOHYDRODYNAMICS

We now have set of equations that describe the dynamics of motion and magnetic fields

in plasma, namely equation (13), equation (17) and equation (22). As equations (22) and
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(13) are vector equations, they technically represent three separate equations, one for each
vector component (x,y,z). We therefore have seven equations, however there are eight
variables - pressure p, density p, components of velocity vector vy, vy, Uz and components
of magnetic field vector By, By, B, thus we must include an eighth equation, an equation
of state:

p=rpp)

Hence our full set of equations is as follows:

P)
v-(pV)+a—’t)=0 (23)
p(5 + ) = DR gy (2
B _
FTi V x (v x B) + (1) "'V?B (25)
p=p(p) (26)

This set of equations is called the Magnetohydrodynamics (MHD) equations; they de-
scribe the dynamics of magnetic fields in fluids that are electrically conductive. Note that
in magnetohydrodynamics, we see no reference to electric forces. This is warranted as it
can be seen that the electric force is negligible in non-relativistic plasmas (ratio of elec-
tric to magnetic forces is far less than one). Since 99% of all matter in the universe is
composed of plasma, magnetohydrodynamics can be applied to a range of astrophysical
systems. It also has applications on Earth where plasma plays a large role for example

nuclear reactors.

13



METHODS FOR CALCULATING CORONAL MAGNETIC FIELDS

Understanding magnetic fields in the solar corona is important as they give us insight
into the shape and dynamics of the corona. It has been shown that magnetic fields bear
a large effect of the temperature structure and density of the corona. The hot and dense
regions of the corona are associated with strong magnetic fields suggesting a link between
coronal heating and solar magnetic fields.*"]

3.1 POTENTIAL FIELDS

Many forces can be described a as vector field. Some can be defined as the gradient of a
scalar potential, and are called potential fields. Represented mathematically, we can say

F=Vo

ie F = ‘%’ “%’ "%’, where F is the potential field, ® is the scalar potential and V is the del op-

erator representing the gradient. Commonly known fields of this nature are gravitational
and electrostatic fields which have associated potential scalars.
Analogously we can describe a potential field for magnetism this way:

B=Vod

where B is the magnetic potential field and & is the magnetic scalar potential. Substituting
this into equation (6)
j=po(Vx V) =0 (27)

we can see that when we define B as a potential field, we must have current free as-
sumption as the curl of a gradient is zero. We can prove this using equation (9) which we
derived using the Levi-Civita symbol. We replace the vectors u and v respectively with

ox 5<D/5x
V= 5y and VO = |so/sy
0z 5‘1’/(52

14
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V2V<I>3 — V3V<I>z
[v X VCD] - V3V®d; — V1VDs
_V1V<I>2 — Vo,Vd,

5@ [sysz — 6°® /525y
= 320 [526x — 52D [5x57

B [5x6y — 62 /5ybx

0
= 10
0

Thus potential fields must be considered current free. This assumption of a current free
corona/potential magnetic field seems misguided since the magnetic field should have
a non-zero curl and therefore current if it is to deliver energy (magnetic fields are hy-
pothesised to deliver energy to the corona and heat it). However coronal phenomena do
seem to follow potential magnetic field lines.[2l For example, magnetic field lines of the
corona are often traced out by coronal loops!*3l. These loops usually have a semi-circular
geometry spanning across two sunspots. Sunspots usually come in pairs of opposite mag-
netic polarity so as a simple approximation, we can model coronal loops with a magnetic
dipole field. Here we outline such a procedure as shown in Aschwanden!4].

Consider a dipole in the centre of a spherical coordinate system (r, 8, ¢). The compo-
nents of the magnetic field due to current loop (in the region far from loop i.e. r >> a)are

given as?3l:
B, = (Irra?) 10 2050 (28)
! 2 13
- 2\ Mo sinb
By = (Ima®) =5 (29)
By, =0 (30)

Let us now define the magnetic field as the gradient of a scalar function in spherical

coordinates 30 130 1 2o
B=Ve = 5% renoag?
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15 ¢

R

0.5

Figure 4: Dipole model of potential magnetic field.

Clearly our potential scalar function must be devoid of azimuthal, ¢, terms as the az-

imuthal component of the magnetic field, By, is zero thus we find that the scalar potential
is
—mcos6

D = 2

We can now calculate the x and y components of the magnetic field which are given as!*4l:
By = B,cosf — Bysinf

B, = Bysinf + Bycoso

where B, and By are as given above and must be converted from polar to cartesian co-
ordinates. Figure 4 shows an approximation of coronal loops with a dipole field in the
(r,0) plane. The x and y vector components of the potential field were calculated with the
equations above and plotted as arrows. Field lines were plotted using the equation:

r = r15in%0

where r is a constant which we set from 0.2 to 2 in increments of 0.2. The equation for r
is derived from proportionality relations and a full derivation can be found in Aschwan-
denl4l. Here we take y = 0.7 as the photospheric height, and place the magnetic dipole
below the solar surface at y = 0 such that the field threads through the surface. The field
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lines do have a resemblance to coronal loops thus the potential field model can be seen
as a viable approximation for the coronal magnetic field.

Let us apply this potential model to three dimensions as opposed to a two dimensional
plane. Recall from equation (27) that we have a current free assumption allowing us to take
the magnetic field as the gradient of a potential scalar, B = V®. However the magnetic
tield must also be divergence free - a condition of Maxwell’s equations (see equation (2)),
therefore we can write this as:

V-B=0
V-V& =0
V2P =0 (31)

Equation (31) is known as Laplace’s equation. This is a partial differential equation
which we must solve to find the potential scalar function. If we choose to carry out our
calculations using photospheric measurements near the centre of the solar disk, and on a
region small enough that curvature is negligible, we can equate the line-of-sight magnetic
field to the normal magnetic field on the boundary (i.e. photosphere), B; = B,. This is
known as the classical Schmidt method as it was first done in this manner by Schmidt
in 196415]. Let us define a coordinate system with the solar surface parallel to the (x,v)
plane and the photospheric boundary as the z = 0 plane, with the z axis along the line-
of-sight. With this coordinate system we can define the magnetic field measurement from
magnetogram as the normal field component on the boundary, B, (x,y) = B.(x,y,0). The
magnetic potential field in the volume above the boundary (z > 0) can be calculated from
the scalar function. This scalar potential must satisfy Laplace’s equation (31) and two
boundary conditions. Since our line-of-sight magnetic field is the normal component of

the derivative of the scalar function, B, = 6 M(nr), we can impose this as a lower boundary

condition known as the Neumann boundary condition:

—n-V® =B, (z=0)
where n is the unit vector in the normal direction. The upper boundary condition simply
ensures that the potential goes to 0 with large distance from origin:

lim ®(r) =0 (z>0)

r—o0
Since we are solving a differential equation with boundary conditions, we can make use

of the Green’s function. Let’s define an additional plane which lies on the z = 0 axis:
r'=(x,y,z) = (x',y/,0). This allows us to use a Green'’s function G(r,1’) to compute the

17
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influence of the normal magnetic field component at each point on the 7’ (photosphere)
plane on the magnetic potential field at z > 0['4]. The Green’s function must satisfy several
boundary conditions similar to those on the potential function, given as!*®l:

-n-VG(r,7)=0 (z=0)

lim G(r,/)=0 (z>0)

r—r'—oo
V2G(r,©)=0 (z>0)
It follows that the Green’s function is:

11
2R 27|r — 7|

G(r,7) = (32)

Thus the scalar potential function can be found with an integration across the photo-

spheric boundary plane r':
() = /Bﬂwxxnwwy
- //Bn(r’)G(r,r’)dx’dy’

where B, (') is the normal magnetic field component, which we have equated to the line-
of-sight field measurements. Note that the line-of-sight measurements are taken at points
on a mesh at a distance of A apart, so each value is calculated from the average of the
field in an area of A% around the point[*®l. Thus it is more appropriate to use a summation

rather than integral, replacing the variable of integration dS’ = dx'dy’ with A%

D(r) = ) Bu(rij)G(r,1i;)A% (33)
ij

This requires us to alter the boundary condition Neumann boundary condition to ac-
count for the mesh sizel*°l:
0 (z=0, [r=ri| > A)

-n- VG(r,rfj) =
/i (z=0, |r— rl’»].| < A),

Thus our Green’s function must also be altered to reflect this:

1

" —
CUr) = g =+ /vl
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We can now insert this into equation (33) to calculate the scalar potential and potential
field. Although this method is useful for approximation of magnetic fields in the corona,
we must assume there is no current thus this model gives us no information about free
energy available in electrical currents!’7l. However many interesting phenomena such
as solar flares and coronal mass ejections do contain current therefore the current free
potential model is unsuitable for studying very active regions!*®l.

3.2 FORCE-FREE FIELDS

The simplest approach to allowing for electrical currents is the force-free model. This
model assumes that the corona is not subject to any external non-magnetic forces. This
is justified if we consider the ratio of magnetic pressure, B*/2,, and plasma pressure, p,

commonly known as B:

<1

p— P _ 2phop
B? /2, B2

We see that the ratio is far smaller than unity meaning plasma pressure is negligible

when compared with magnetic pressure, thus we can ignore any non-magnetic forces on

the coronal plasmal??l. We can therefore define force free fields to have no Lorentz force

and write:

jxB=0 (34)

Since the cross product of these two vectors is zero, we can see that the current density

is parallel to magnetic field in a force-free field. we can rewrite this using a function, «,
(known as the force-free or torsion function)

toj = aB (35)

Recall that (6) gives us an equation for ppj which we can insert into equation (35) thus

giving:
V xB=uaB (36)

We can then take the divergence of (36) and use the vector identity V - (V x u) = 0 to
show:

V-(VxB)=V-(aB)
0=a(V-B)+B-Va
We know from (2) that V - B = 0 thus the above equation can be reduced to
B-Va=0 (37)

The « function represents a ratio of the current density and magnetic field strength[”].
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3.2.1 Linear force-free

It is clear to see from (36) that the current free potential model discussed previously is
just a special case of the force-free model where we set & = 0. The next step up would
be to assign « as a constant such that the condition posed in equation (37) is still met
(Vconst = 0). This is known as a linear force-free model as we have simplified the non-
linear condition given in equation (36). Let us now take the curl of (36):

Vx(VxB) = VxaB
= a(V xB)
= o«’B (38)

Recall from equation (8) the vector identity V x (V x A) = V(V - A) — V2A which we
proved with the Levi-Civita symbol. We can substitute this into equation (38) giving us

V(V-B) - V?B = a’B
We can again use the divergence free condition from equation (2) to reduce the above to
~V°B = «’B
«’B+ VB =0 (39)

Equation (39) is a form of the Helmholtz equation. Linear force-free fields can be calcu-
lated using only normal magnetic field components, B, making it a desirable simplifica-
tion. Solutions for the linear force-free model have been achieved using a range of meth-
ods such as Green’s function!"9!2°l and Fourier series!?’l. However, it has been shown
that a constant & assumption is unrealistic within active solar regions thus we should set
a changing a which is a function of position, i.e. a(r)?2l.

3.2.2  Non-linear force-free

Using an « that is a function of position changes the model to a non-linear force-free
one. In doing so, it is no longer possible to take only B, as a boundary condition, thus
we must include addition boundary conditions. This can be done by either stating the
footpoints of the magnetic field lines, or by stating the value of a!7]. Recall that equation
(37) restricts our choice of the « value by showing that there can be no change in « along
a single magnetic field line, however different field lines can have different « values. Thus
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we can see that the footpoints of each field line must be in positions where « is the same.
The value of « at photospheric height (i.e. the z=0 plane) can be calculated with use of
equation (36), when we have measurements for the tangential magnetic field components
(these can be obtained from vector magnetograms), B, and By, as well as the normal

9B, 9B,\ 1
"‘—<ax‘ay>3n (40)

Seeing as a should be the same at the two points of opposite polarity connected by a

component:

tield line, the value is calculated for the area spanning just one of either the positive of
negative magnetic polarity at the footpoint. This consequently averts a problem arising
from measurement noise - if a field line with a footpoint at the point with the lowest «
has the « at that point increased by noise, the condition in equation (36) no longer holds
truel’7l. Note that we can not only obtain an expression for a (40) from equation (36), but
if we additionally make use equation (37) and (2) we can also obtain the derivatives with
respect to the z axis for each magnetic field component and «. Furthermore these can all
be expressed as functions of derivative in the x and y direction*4]:

a& = aB, + 9B;
oz VT o
5z = Bty
o5 _ b, on,
9z  dx 9y
ow 1 ow ow

It is clear to see that by integrating the above differential equations with respect to z, the
components of the magnetic field as well as a will be acquired for a step of dz. This can
be done continually to obtain the coronal field to the desired height on the z axis. This
method of extrapolating the coronal magnetic field is known as the upwards integration
method. It is popular due to its relative simplicity in the context of computation. However,
it is subject to various complications stemming from the fact that the above differential
equations are based on an "ill-posed problem". Any inconsistencies in the boundary condi-
tions, including measurement noise mentioned above, have a large effect on the solutions
and have been shown to cause the extrapolated field to diverge™#1>2l. This is clearly
physically unrealistic as it is known that magnetic fields do not diverge (V - B = 0).
Several other methods aside from upward integration also exist for calculating non-
linear force-free models of the solar corona. The most widely used methods are: MHD
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relaxation, Grad-Rubin iteration, boundary/Green’s function and optimisation[23]. With
the exponential increase of computational power available to the everyman in recent years,
more complex models of the coronal field have been built and tested. Whereas exhaus-
tive methods such as MHD relaxation would have needed supercomputers just a few
decades ago due to the intensive computational requirements, the present day has per-
haps allowed for such models to be run on personal computers!>?). The MHD relaxation
method, as the name suggests makes uses of the MHD equations. Like a seed state for
pseudorandom number generators, the current-free potential field is provided as a "seed’
to calculate the final force-free field. A Lorentz force is applied to photospheric height of
the potential field to stress the field so that the tangential components of the magnetic
field approximate those observed in vector magnetograms. The field is then relaxed” to-
wards a equilibrium force-free state by balancing the Lorentz force with viscosity[*®l. Here
we outline the method for the case where the assumption g = 0 is made (known also as
the magnetofrictional method). We start with a form of the equation of motion given in

equation (24):
B) x B
p(av+<v.v>v) Lyp (VXB)xB
ot Ho

In order to ‘relax” the field, the dissipative term which is a function of the velocity is also

+D (41)

included in the equation of motion and is given as:
D= —vv

where v is viscosity. It is this viscosity term that causes the dissipation function to relax
the field. The viscosity term is usually artificially defined to speed up the relaxation to
equilibrium. A common definition for the viscosity is given as:

B2
o

v

where y is permeability and is taken as a constant. Thus we insert this into the dissipative
term and rewrite it as:
B2
D=-v—
H

In this method the plasma beta is taken to be zero, i.e. only magnetic forces are relevant,
all other external forces can be ignored. This allows us to completely ignore the terms on
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the left hand side in equation (41) (note that the —Vp term had already been moved to
the LHS), thus we are left with:

0 — (VxB)xB 4D
Ho
~ (VxB)xB B
Ho H
Rearranging for the velocity we get:
(VxB)xB
V=
B
Recall from chapter 2.1 that in an ideal MHD system, we must have E = —v x B in order

to keep the current density finite. Notice that we can substitute the velocity expression

above into E:
((VxB)xB)xB

B2
Finally we can use this definition of the electric field in Faraday’s Law (or induction

E=—

equation) given in equation (3) in order to obtain an expression for the rate of change of

magnetic flux as it relaxes towards equilibrium:

]
a—? = —VXE (42)
((VxB)xB)xB

= VX B8

Let us review the available extrapolation methods. The simplest model was the poten-
tial model. This was seen to be inadequate for modelling active regions due to current-
free assumption. The linear-force free model was inadequate due to the constant alpha
assumption. The non-linear force-free models currently provide the best description of
coronal fields. Higher complexity models provide more accurate description of the coro-
nal magnetic field, however require more observational data as input — potential field
model only requires line-of-sight magnetograms, in contrast force-free models require

vector magnetograms.
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In this section we will apply the Green’s function method to observed line of sight mag-
netic field components in a region near to the centre of the solar disc and small enough
for curvature to be negligible. This is also known as the classical Schmidt method.

4.1 APPLICATION TO ARTIFICIAL DATA

Sunspots at the photospheric height are observed as the anchors at the end of coronal
loops. These trace out the magnetic field lines which protrude out from the photosphere,
thus we should expect to see similar loop like structures in our potential field model.
Since sunspots come in pairs of opposite magnetic polarity, we could model a sunspot
pair with the normal magnetic field given by two Gaussian functions of opposite sign:

(43)

B, — A, —(x—xl)z—(y—m)z)] A, T(x—xz)z—(y—yz)z)

2 2
01 %)

where B, is the normal magnetic field, a function of x and y. The sunspots are located at
positions (x1,y1) and (x2,y2), with an amplitude of A; and A; respectively. The widths
are denoted by ¢y and ¢>. Figure 5 and 6 show a pair of sunspots we have modelled

2
2,5
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Figure 5: Plot of a sunspot pair modelled with a Gaussian function. Amplitude represented with
a heat map.

using equation (43) to calculate the normal magnetic field component at each point. The
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Figure 6: Plot of a sunspot pair modelled with a Gaussian function. Amplitude projected onto z
axis for visual representation.

"sunspots" were placed at (10,10) and (17,17) — i.e. (x1,y1) = (10,10) and (x2,y2) =
(17,17) within a box of side length 30 — with amplitudes of 3 and 2 respectively. The
widths of both are set as 0> = 1.2. The artificial normal magnetic field values were com-
puted and written to a file using python, which was then read into another program
written to extrapolate the potential field using the Green’s function method. This pro-
gram is discussed in detail below, and the source code is available in the appendix of this
document.

As we can see from figure 7 the potential field components computed from the artificial
normal magnetic field components show loop like structures bearing a resemblance to
coronal loops. Thus we see this model is viable for extrapolating potential fields and we
can move forward to using observed data rather than artificial data.

4.2 APPLICATION TO OBSERVED DATA

The data used in our simulation was taken from the Helioseismic and Magnetic Imager
(HMI), an instrument aboard the SDO that collects line-of-sight magnetograms among
others. This was retrieved from the Joint Science Operations Center (JSOC) database.
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Figure 7: Plots showing a two dimensional contour slice of x and y components of the magnetic
potential field calculated from artificial normal magnetic field data approximated with
Gaussian function.

4.2.1  Numerical setup

The data from the HMI is given in the Flexible Image Transport System (.fits) file format,
commonly used in scientific studies, especially in the astro fields. Each image has a size
of 4096 x 4096 pixels. A program called fv, part of a larger software suite HEASOFT de-
veloped and maintained by NASA was used to extract data from the .fits file and convert
it into a comma-separated values (.csv) format file. Each line of the .csv file corresponds
to a line perpendicular to the y axis in our chosen region, with the line-of-sight magnetic
field measurement for each point on the x axis contained within quotation marks and
separated by commas. The .csv file is then fed into the main Java program which reads
each line into an array with the readData method, then splits each value of the line by
the comma with the parseData method, thus creating a two dimensional array (labelled
as data in the code) containing the normal magnetic field values. This data is then used
to calculate the potential ®, given in equation (33). The potential is calculated for each
position of X, y and z and stored in a three dimensional array (labelled as phi in the code).
This is achieved by using the summation given in equation (33) within five nested loops,
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one for each axis of r and 1" —i.e. X, y, z, X" and y’. We take the mesh size to be unity, i.e.
A =1, thus the full expression of our Green’s function is

1
27t|r — v’ + (8/v2r)n|

1

- 27'('\/(x—x/)2+(y_y/>2+22+1/m (44)

G(r,”) =

Now that the potential has been calculated for every point in our box, it is then used to
calculate each of the three Cartesian components for the magnetic field at every point in
the box which are also stored in three dimensional arrays. Recall that a potential / current-
free field can be defined as the gradient of the potential scalar ®. Thus we must include
an algorithm in the program to calculate the derivative of the potential. One such method
of calculating the derivative is the use of spectral methods. Although spectral methods
are frequently used in numerical analysis, we choose to use a finite difference method
to approximate the derivative. This has the advantage of faster computation times when
running the program. We use the 4th order centred finite difference — the derivative of
the function is computed from 4 values of the function (2 values on either side of the

point where we want to calculate the derivative). The formula for this is given by[°l:

,_ (fica —8fi1 +8fis1 — fiy)
fl= o + (45)

We see that the derivative for index/position i refers to the function at index i-2. This
would lead to an index out of bounds error if our potential field box is the same size as
that of the potential scalar. Thus to allow for these indices, we reduce the size of our box
by two mesh points on each side, taking the potential scalar at the exterior regions as
"ghost cells’.

The 4th order finite difference algorithm computes the potential magnetic field com-
ponent arrays which are then written to files with the writeData method and processed
for plotting. The potential field data was visualised using Vislt, a tool developed by the
United States Department of Energy. The data from the potential field files were com-
piled into the (legacy) Visualization Toolkit (VIK) file format in a python script using a
vtk file writer library (visit_writer.so) bundled with Vislt. The separate components of
the potential field — By, B, and B, — can then be collated into the complete vector field
and visualised using the Vislt tool.
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4.2.2  Results

A region of 140 x 140 pixels was extracted from a HMI line-of-sight magnetogram taken
on the 15th of January 2014. The centre of this region is located at (2240, 1550). As men-
tioned earlier, the magnetogram images have a resolution of 4096 pixels on each side.
There is roughly 20 pixels of empty space from the edges of the image to the edge of
the sun so we can take the diameter of the sun to be approximately 4056 pixels. In more
conventional SI units, the sun has a diameter of Ds,,, = 1.39 x 10°m therefore each pixel in
the magnetogram represents Dsu /4056 ~ 0.34Mm, thus our 140 x 140 pixel region is about
48 x 48Mm. Figure 8 shows the magnetogram and the chosen region. Figure 9 shows
a streamline plot of the extrapolated magnetic vector field, visualised using Vislt. Clear
loop like structures are seen, bearing some resemblance to coronal loops. A comparison
of the streamline plot with an extreme ultra violet (EUV) image taken from the AIA is
shown in figure 10. The extrapolated coronal field has similar features to what is seen in
the EUV image — both have a strong area of field lines extending from the centre of the
left to the top of the box. However it is clear to see that the extrapolated potential field is
a rather crude approximation of the coronal field when compared with the AIA image. In
the constructed potential field model, field lines extend out through the right side of the
box. This is not seen in the EUV image, in fact the field completely leaves the box through
the top and does not touch the right edge.

Figure 8: Left: Line of sight magnetogram from Helioseismic and Magnetic Imager taken on the
15th of January 2014. The 140 x 140 pixel region is shown within the cyan box.
Right: Enlarged image of the chosen region.
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Figure 9: Streamline plots of the extrapolated potential magnetic field.

Figure 10: Left: Top down view of streamline plots of the extrapolated potential magnetic field.
Right: Corresponding region from an Atmospheric Imaging Assembly image in the EUV
wavelength range. Image shown was taken in the 171Awave1ength.
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CONCLUSION

We have explored several methods of extrapolating the magnetic field of the solar corona
from measurements of the photospheric field. This was seen to be necessary due to compli-
cations in observations. All models of the coronal magnetic field discussed were assumed
to be force-free, that is to say all non-magnetic forces were negligible. Whilst this can be
justified in the solar corona due to the low plasma B, the same cannot be said for the pho-
tosphere and chromosphere. However these models can serve as a good approximation,
especially the non-linear force-free solutions. Our use of the Green’s function method for
potential field extrapolation was seen to produce similar results to EUV observations but
unsuitable as an accurate representation. Since current models are constrained by assump-
tions which must be made due to observational limitations, it seems we must strive for
improvements in our observational capabilities of magnetic fields in the corona. Neverthe-
less some progress has been made in recent decades in our understanding of the corona,
especially the establishment of AC and DC heating models regarding coronal heating.
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APPENDIX

A.1 MAIN PROGRAM

Normal magnetic field data file must be placed in directory named input. Potential field

components are written to files in directory named output.

import
import
import
import
import
import

public

java.io.BufferedReader;

java.io.BufferedWriter;

java.io.FileReade
java.io.FileWrite
java.util.ArrayLi
java.util.Scanner

class Main {

private static d
public static vo

long sta
Scanner
String f
System.o
filename
System.o
Double[]
System.o

//calcul
System.o
doublel]
for (int

r;
r;
st;

’

ouble twopi = Math.PI * 2;
id main(String[] args) throws Exception {

rtTime = System.currentTimeMillis();

user_input = new Scanner(System.in);

ilename;

ut.println("Enter file name for magnetic normal data: ");
= user_input.next();

ut.print("Reading from file...");

[] data = readData(filename + ".csv");

ut.println(" Done!");

ate potential scalar
ut.println("Running computations");
[1[]1 phi = new double[data.length][data.length][data.length];
X = 0; X < data.length; X++) {
for (int Y = 0; Y < data.length; Y++)
for (int Z = 0; Z < data.length; Z++)
for (int Xd = 0; Xd < data.length; Xd++)
for (int Yd = 0; Yd < data.length; Yd
++) {
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phi[X1[Y][Z] += ((double)

data[Xd][Yd])=*(1/twopix

Math.sqrt((X - Xd)*(X -

Xd) + (Y - Yd)*(Y - Yd) +
(Z)%(Z) + (1/Math.sqrt(

twopi))));

}
System.out.println("..." + (data.length - 1 - X));

}
System.out.println("Done!");

//calculate potential magnetic field components
double[]1[]1[] Bx = new double[data.length - 4][data.length - 4][data.

length - 4];

double[]1[1[] By = new double[data.length - 4][data.length - 4][data.
length - 4];

double[][]1[] Bz = new double[data.length - 4][data.length - 4][data.
length - 4];

for (int k = 2; k < data.length - 2; k++)
for (int j = 2; j < data.length - 2; j++)
for (int 1 = 2; i < data.length - 2; i++) {

Bx[i-2][j-2]1[k-2]1 = (phi[i-2][j][k] - 8x*phi[i
-111310K] + 8+phi[i+11[j1[k] - phi[i+2][]
1[k1)/12;

By[i-2][j-2]1[k-2] = (phi[i][j-2][k] - 8xphi[i
113-110k] + 8+phi[i][j+1]1[k] - phi[il[]
+2][k1)/12;

Bz[i-2][j-2]1[k-2] = (phi[i][j][k-2] - 8+phi[i
11310k-11 + 8xphi[i][j]1[k+1] - phi[il[j]I
k+21)/12;

}
//write vector components to file
System.out.print("Writing to file.");
writeData(Bx, "bx.dat");
System.out.print(".");
writeData(By, "by.dat");
System.out.print(".");
writeData(Bz, "bz.dat");
System.out.println(" Done!");
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A.1 MAIN PROGRAM

long endTime = System.currentTimeMillis();

long runTime = endTime - startTime;
System.out.println("Run time: " + runTime/1000.0 + " seconds");

public static Double[][] readData(String filename) throws Exception {

ArrayList<String> rawData = new ArraylList<>();

BufferedReader reader = new BufferedReader(new FileReader("input/" +

filename));

String line;
while ((line = reader.readlLine()) '= null) rawData.add(line);
reader.close();

String[] output = new String[rawData.size()];
return parseData(rawData.toArray(output));

public static Double[][] parseData(String[] rawData) {

ArrayList<Double[]> parsedData = new ArraylList<>();
for (int i = 0; i < rawData.length; i++) {
String[] temp = rawData[il].split(",");

Double[] row = new Double[temp.length];
for (int j = 0; j < temp.length; j++) row[j] = Double.

parseDouble(temp[j].replace("\"", ""));

parsedData.add(row);

Double[][] output = new Double[parsedData.size()][parsedData.get(0).

length];
return parsedData.toArray(output);
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public static void writeData(double[][]1[] data, String filename) throws
Exception {

BufferedWriter writer = new BufferedWriter(new FileWriter("output/" +
filename));

for (int x = 0; x < data.length; x++)
for (int y = 0; y < data[x].length; y++)
for (int z = 0; z < data[x][y].length; z++)
writer.write(Double.toString(data[x][yl[z]) +
"\n");
writer.close();

A.2 COMPILER TO .VTK FORMAT FOR VISUALIZATION

This must be placed in the output directory.

import visit writer, math

#open files for reading

f = open(’'bx.dat’, 'r’)
9

h = open(’'bz.dat’, 'r’)

open(’by.dat’, ’'r’)

points = int(raw_input('How many pixels on side of region chosen?’))-3
#setup dimensions

NX = points

NY = points

NZ = points

#read data to temporary arrays
vecx = []

vecy = []

vecz = []

for line in h:
vecz.append(float(line.strip()))
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A.2 COMPILER TO .VTK FORMAT FOR VISUALIZATION

for line in g:
vecy.append(float(line.strip()))

for line in f:
vecx.append(float(line.strip()))

#create nodal variable for x component of mag field
index = 0
magxcomp = []
for k in range(NZ):
for j in range(NY):
for i in range(NX):
magxcomp.append(vecx[index])
index +=1
#create nodal variable for y component of mag field
index = 0
magycomp = []
for k in range(NZ):
for j in range(NY):
for i in range(NX):
magycomp .append(vecy[index])
index +=1
#create nodal variable for z component of mag field
magzcomp = []
index = 0
for k in range(NZ):
for j in range(NY):
for 1 in range(NX):
magzcomp.append(vecz[index])
index = index + 1
dims

(NX, NY, NZ)

vars
1, magzcomp))

visit writer.WriteRegularMesh("plottabledata.vtk", 0, dims, vars)

(("magxcomp", 1, 1, magxcomp), ("magycomp", 1, 1, magycomp),

("magzcomp", 1,

35



BIBLIOGRAPHY

[1] Tsiklauri, D. Missing pieces of the solar jigsaw puzzle. Astronomy & Geophysics 2009;
50(5):5.32-5.38.

[2] Backman, D.; Seeds, M. The Solar System. Seventh Edition. Cengage. 2011.

[3] Aschwanden, M.].; Winebarger, A.; Tsiklauri, D.; Peter, H. The Coronal Heating Paradox.
The Astrophysical Journal 2007; 659(2):1673-1681.

[4] Parker, E.N. Nanoflares and the solar X-ray corona. Astrophysical Journal 1988; 330:474-
479-

[5] Klimchuk, A.]. Solving the Coronal Heating Problem. Solar Physics 2006; 234(1):41-77.

[6] Iwai, K.; Shinya, K.; Takashi, K.; Moreau, R. Pressure change accompanying Alfvén waves
in a liguid metal. Magnetohydrodynamics 2003; 39(3):245-250.

[7] Alfven, H. Existence of Electromagnetic-Hydrodynamic Waves. Nature 1942;
150(3805):405-406.

[8] Benz, A.O. Flare Observations. Living Reviews in Solar Physics 2008;5(1).

[o] Bowness, R.; Hood, A. W.; Parnell, C. E. Coronal heating and nanoflares: current sheet
formation and heating. Astronomy & Astrophysics 2013; 560(A89):14.

[10] Vainshtein, S.I. Anomalous resistivity as the possible cause of fast reconnection in the solar
corona. Solar Physics 1989; 124(1):129-144.

[11] Vaiana, G.S. and Rosner, R. Recent Advances in Coronal Physics. Annual Review of
Astronomy and Astrophysics 1978; 16:393-428.

[12] Altschuler, M. D. Magnetic Structure Responsible for Coronal Disturbances: Observations.
Coronal Disturbances 1974; proceedings from IAU Symposium 57.

[13] Poletto, G.; Vaiana G.S.; Zombeck M.V.; Krieger A.S. and Timothy A.F. A comparison
of coronal X-ray structures of active regions with magnetic fields computed from photospheric

observations. Solar Physics 1975; 44:83-99.

36



BIBLIOGRAPHY

[14] Aschwanden, M. Physics of the Solar Corona. First Edition. Springer. 2005.

[15] Schmidt, H.U. On the Observable Effects of Magnetic Energy Storage and Release Con-
nected With Solar Flares. NASA Special Publication 1964; 50:107.

[16] Sakurai, T. Green’s Function Methods for Potential Magnetic Fields. Solar Physics 1982;
76(2):301-321.

[17] Metcalf, T.R.; DeRosa, M.K.; Schrijver, C.J.; Liu, Y.; McTiernan, J.; Regnier, S. et al.
Nonlinear Force-Free Modeling of Coronal Magnetic Fields Part I: A Quantitative Compari-
son of Methods. Solar Physics 2006; 235(1-2):161-190.

[18] Metcalf, T.R.; DeRosa, M.L.; Schrijver, C.]J.; Barnes G.; van Ballegooijen, A.A.; Wiegel-
mann T. et al. Nonlinear Force-Free Modeling of Coronal Magnetic Fields. 1I. Modeling a Fil-
ament Arcade and Simulated Chromospheric and Photospheric Vector Fields Solar Physics
2008; 247(2):269-299.

[19] Seehafer, N. Determination of constant alpha force-free solar magnetic fields from magneto-
graph data. Solar Physics 1978; 58:215-223.

[20] Chiu, Y. T. and Hilton, H. H. Exact Green’s function method of solar force-free magnetic-
field computations with constant alpha. I - Theory and basic test cases. Astrophysical Jour-
nal, Part 1 1977; 212:873-885.

[21] Alissandrakis, C. E. On the computation of constant alpha force-free magnetic field. Astron-
omy and Astrophysics 1981; 100(1):197-200.

[22] Wiegelmann, T. Nonlinear force-free modeling of the solar coronal magnetic field. Journal
of Geophysical Research (Space Physics) 2008; 113(A3).

[23] Wiegelmann, T. Optimization code with weighting function for the reconstruction of coronal
magnetic fields. Solar Physics 2004; 219(1):87-108.

[24] Abhyankar, K.D. A Survey of the Solar Atmospheric Models. Bulletin of the Astronomi-
cal Society of India 1977; 5:40.

[25] Jackson, J.D. Classical Electrodynamics. Third Edition. John Wileys & Sons, Inc. 1925.

[26] Brandenburg, A. Computational aspects of astrophysical MHD and turbulence. Advances
in Nonlinear Dynamics. Taylor and Francis Group. 2003

37



38

BIBLIOGRAPHY

[27] Sakurai, T. Calculation of force-free magnetic field with non-constant alpha Solar Physics
1981; 69(2):343-359-
[28] Zhu, X.S.; Wang, H.N.; Du, Z.L.; Fan, Y.L. Forced Field Extrapolation: Testing a Magne-

tohydrodynamic (MHD) Relaxation Method with a Flux-rope Emergence Model. The Astro-
physical Journal 2013; 768(2):7.



	Abstract
	Acknowledgements
	Contents
	List of Figures
	1 Introduction
	1.1 Unsolved problems of the solar corona

	2 Theory of coronal plasma physics
	2.1 Electromagnetism
	2.2 Fluid motion
	2.3 Magnetohydrodynamics

	3 Methods for calculating coronal magnetic fields
	3.1 Potential fields
	3.2 Force-free fields
	3.2.1 Linear force-free
	3.2.2 Non-linear force-free


	4 Potential Field Calculation using Green's function
	4.1 Application to artificial data
	4.2 Application to observed data
	4.2.1 Numerical setup
	4.2.2 Results


	5 Conclusion
	A Appendix
	A.1 Main program
	A.2 Compiler to .vtk format for visualization

	Bibliography

